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ABSTRACT

TAC THUNDER is the Air Force's premier campaign level model. Perhaps the
most important input to TAC THUNDER is the user-defined apportionment of available
aircraft. This apportionment defines the percentage of each type of aircraft that are
assigned to specific missions. An optimal apportionment represents the best use of
aircraft available to the theater commander. Campaign outcomes using an optimal
allocation are a powerful tool for demonstrating that no superior non-material solution
exists as far as aircraft employment is concerned. That is, an optimal allocation addresses
Congress's concern that US military commanders fully exploit current weapons systems
before acquiring replacement systems.

To effectively compare different sets of available aircraft, it is necessary to find
the apportionment that maximizes the effectiveness of each set of aircraft. This research
effort uses an unclassified scenario to show how an analyst can use response surface
methodology (RSM) techniques to estimate the relationship between aircraft
apportionment and campaign outcomes.

The optimal apportionment for one phase of a hypothetical conflict was found by
using a steepest-gradient search of the constrained response surface. The results are
illustrated by illuminating charts showing the various relationships between the number
of aircraft in the theater and measures of effectiveness such as FLOT movement and
attrition. The results show close air support and interdiction missions to be highly
effective in this phase of the scenario. The effect of the enemy's air-to-air probability of
kill (AAPk) and surface-to-air probability of kill (SAPk) on the MOEs provides insight
into the robustness of the solution in terms of these operational uncertainty parameters.
This type of sensitivity analysis also provides useful information on how the TAC
THUNDER algorithms interact to simulate the combat environment.
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I. Introduction

It is absolutely necessary to study new systems in the context of the
environment in which they will participate. We must measure the inter-
dependencies that are becoming a bigger and bigger part of a system's
contribution to the overall campaign (Smith, 1992; 13)

In this era of declining defense expenditures and increasingly expensive research

and development programs, the U.S. must focus its R&D dollars on those programs that

add the most capability per tax dollar spent. Computer simulations of future battlefields

provide an accepted framework for comparing alternative weapon systems. In evaluating

such alternatives, the effectiveness of each weapon system must include its own

capabilities, as well as its contribution to the combat effectiveness of the overall force.

The Aeronautical Systems Center (ASC) uses a computer simulation called TAC

THUNDER tu simulate a theater-level conflict. ASC uses TAC THUNDER to evaluate

the effectiveness of various aircraft designs and modifications. By simulating a conflict

repeatedly, analysts can measure the effect of changing the number and type of aircraft on

the outcome of the hypothetical war. From a force analysis point of view, the results of a

simulated war would ideally depend on only the characteristics of the forces involved.

Not surprisingly, the manner in which forces are employed has a tremendous impact on

the outcome of the war.

Current acquisition regulations recognize that a weapon system's effectiveness

depends on force employment doctrine. The justification for a new weapon system must

show that the deficiency the system is designed to eliminate cannot be eliminated by

using current systems more effectively. Using current systems more effectively is

referred to as a "non-material solution". The non-material solution issue could be

resolved if an optimal force employment strategy for both sides could be found.

However, theater-level combat models are generally very large and complex. To

simultaneously optimize the use of ground, sea, and air forces on both sides of a large
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simulated conflict is computationally intractable. ASC/XREC, the campaign analysis

office for ASC, sponsored this thesis in an effort to develop a method to determine if non-

material solution alternatives are available for Air Force weapon system proposals.
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II. Background

Introductio
This chapter provides a background on the material used in this thesis. It is

intended to familiarize the reader with the diverse topics covered and provide references,

via the bibliography, for those readers interested in additional in-depth information. The

major topics covered are the air campaign, air apportionment, TAC THUNDER, and

response surface methodology (RSM). The air campaign is the primary focus of the

computer simulation TAC THUNDER. One of the major user inputs to TAC THUNDER

is the aj~portionment of air power to various mission classes. RSM is the set of

techniques used to investigate the functional relationship between the air apportionment

and the outcomes of the simulated campaign. Applying optimization methods to this

functional relationship can identify the best air apportionment for a given scenario and

measure of effectiveness.

AramirgC
AFM 11-1 defines the air campaign as "A connected series of operations

conducted by air forces to achieve joint force objectives within a given time and area of

operations" (AFM 1-1, 1992). In order to execute this series of operations, the air

commander must decide where to focus his efforts. He must apportion his aircraft

between the various missions they can perform. For example, air superiority aircraft can

be used offensively or defensively. Similarly, aircraft that deliver munitions can do so to

a variety of target classes such as front line troops, reserve troops, bridges, and airfields.

The percentage of available aircraft assigned to perform each of these missions is referred

to as the aircraft apportionment.
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It is vitally important that the commander use his resources most effectively to

accomplish his objectives. Technical superiority is not sufficient to guarantee victory

(Warden, 1989).

Air Apportionment

"Allocation strategy is the most powerful driver of all the factors which determine

the outcomes of campaigns and wars" (Smith, 1992;3). Air forces are allocated through

the air apportionment. It assigns a percentage of available aircraft to specific missions

and can change from day to day.

The missions defined in TAC THUNDER (version 5.9) are:

- Close air support (CAS) - attack units engaged in direct fire combat.

- Battlefield air interdiction (BAI) - attack support and 2nd echelon units.

- Air interdiction (INT) - attack the enemy's logistic facilities, C3 facilities, choke

points, transshipment points, rear-area units, or supply trains.

- Offensive counter-air (OCA) - attack the enemy's capability to generate sorties. These

missions exclusively attack air bases.

- Strategic targets interdiction (STI) - attack the enemy's strategic targets.

- Fighter sweep (FSWIP) - an offensive air-to-air mission, attacks enemy aircraft that are

operating on their own side of the FLOT during a period when friendly ground attack

aircraft are operating in the vicinity.

- Defensive counter-air (DCA) - aircraft sit on the ground and wait for the enemy's OCA

or INT attacks. A DCA aircraft flies only in response to an attack. If it takes off and fails

to intercept the enemy, it acts exactly like a BARCAP aircraft.

- Barrier combat air patrol (BARCAP) - aircraft, while on station, patrol a designated

area and attempt to intercept any enemy aircraft that attempt to pass.
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- Over-FLOT defensive counter-air (ODCA) - aircraft sit on the ground and wait for a

certain type and size enemy flight to take off. An ODCA aircraft then flies up to a user-

defined distance into enemy territory to attack the flight.

- Stand-off lethal air defense suppression (SSUP), stand-off air defense jamming

(SJAM), close-in lethal air defense suppression (CSUP), and close-in air defense

jamming (CJAM) - aircraft orbit the battlefield and are available to support other

missions that are threatened by enemy air defenses. The two primary differences between

close-in and stand-off missions lie in the manner in which targets are assigned and

generated and the aircraft orbit location with respect to the FLOT. As far as mission

execution, there is no difference.

- Direct lethal air defense suppression (DSEAD) aircraft attack air defense sites within

a corridor. Aircraft will attack the assigned air defense sites for a given amount of time

before the corridor becomes active.

- Reconnaissance (RECCE) - collects intelligence about the enemy.

- Lethal air defense suppression escort (ESUP) - aircraft accompany missions to

provide lethal suppression of enemy air defenses.

- Air defense jamming escort (EJAM) - aircraft accompany mission to provide

jamming suppression of enemy air defenses.

- Air-to-air escort (AIRESC) - aircraft accompany missions to provide air-to-air

protection.

- Reserve (RES) - aircraft being held for possible future use.

Not every scenario requires every mission type. For example, strategic target

interdiction (STI) is used only when there are strategic targets in the theater. These targets

are usually more political in nature and do not directly impact the capabilities of the

forces fighting. Some scenarios require that 100% of the aircraft be assigned to non-

reserve missions.
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TAC THUNDER

TAC THUNDER is a piston driven, theater-level combat model. It uses an

aggregated, deterministic ground war and a detailed, stochastic air war to simulate a

theater-level conflict (TAC THUNDER Analyst's Manual, 1992). It models ground units

at the regiment and division level, consistent with the Army's FORCEM model. Aircraft

sorties are modeled individually.

By simulating the same theater-level campaign under different conditions, such as

the addition of new equipment (or the substitution of one set of equipment for another),

TAC THUNDER provides a means to assess the effect of those changes on the campaign

objectives. The advantage of a theater-level model over smaller, higher fidelity models

is that it measures the impact of each alternative in terms of the overall theater campaign.

Each TAC THUNDER scenario requires over sixty data files to define the size,

shape, and geography of the theater as well as the forces and objectives of both sides.

The model uses this input data to assign aircraft to specific targets on each day of the

war. Most of the data files are simply descriptive, but the apportionment of available

aircraft into TAC THUNDER-defined missions is a critical input. Since the

apportionment determines the allocation of air resources, an unacceptable campaign

outcome might be due to an inappropriate apportionment rather than to inadequate

aircraft capabilities. To ensure that the outcomes reflect the capabilities of the aircraft,

the apportionment file must assign the right aircraft to the right missions.

In TAC THUNDER, aircraft are assigned to mission classes; a percentage of each

mission class is then apportioned to specific missions. For example, F-15 and F-14

aircraft are grouped together to form the air superiority mission class. The air

apportionment assigns a percentage of air superiority aircraft to air escort, fighter-sweep,

and barcap missions. Other mission classes include multi-role, deep strike, and ground

support.
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TAC THUNDER is written in SIMSCRIPT 11.5. SIMSCRIPT is a structured

simulation language which is designed to be nearly self-documenting. TAC THUNDER

requires 500 megabytes of hard drive space and can be run on any machine that runs

SIMSCRIPT 11.5. A SUN workstation or DEC station is required to support the terminal

graphics used in TAC THUNDER's situation map and grapher.

Response Surface Methodology (RSM)

RSM is a structured set of techniques for empirical model building and model

exploitation (Box and Draper, 1987;1). These techniques include design of experiments,

least squares regression, and optimization. Several good texts exist to assist readers who

wish more information on RSM (Box and Draper, 1987), design of experiments

(Schmidt, 1991), or applied regression (Draper and Smith, 1981).

RSM seeks to relate a response or output variable to the values of a number of

predictors or input variables. The prediction of the response to various input variables is

called a response surface. Since a simulation is a model itself, the response surface of a

simulation is sometimes referred to as a metamodel (a model of a model).

Empirical models attempt to explain how the inputs relate to the output of a

process. Empirical model building estimates the response in an area of immediate

interest. The true response function is unknown but it is assumed that it can be locally

approximated by a polynomial or some other type of function. This polynomial can be

conceptualized as an "analytic French curve." It approximates the true response function

over a small experimental region.

If the air apportionment can be reduced to a reasonable number of factors, then

standard RSM techniques can convert a set of simulation runs conducted in accordance

with an experimental design into a metamodel of the simulation.
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Sequential experimentation is a structured method of scientific investigation. This

research used sequential experimentation as the framework to guide the application of

RSM techniques. Sequential experimentation consists of an iterative cycle of

investigation: CONJECTURE, DESIGN, EXPERIMENT, and ANALYSIS. Figure 2.1

illustrates this cycle. Conjecture is the hypothesis that the analyst wants to test. Design

is the synthesis of a suitable experiment to test, estimate, and develop a current

conjectured hypothesis. Analysis is the treatment of the experimental results, leading

either to verification of a postulated model and the working out of its consequences, or to

the forming of a new or modified conjecture (Draper, N. R. and H. Smith;8).
Experiment

An ysis

Ana sis

D sign ~D ign D g

Conjecture 
Di/sign V 

Dgn

Figure 2.1 The iterative nature of experimentation. (from Empirical Model-

Building and Response Surfaces by Box and Draper)

The conjectures for a particular experiment depend on the experimenter's

understanding of the process under study. In the first stage of studying a process, the

conjectures focus on identifying WHICH variables are important. After identifying

WHICH are the important variables, the conjectures focus on identifying HOW the

response behavior relates to the important input variables. This stage is often called

empirical model building since the product is an empirical relationship between inputs

and outputs. Finally, the conjectures focus on WHY the process responds the way it
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does. This stage is often called mechanistic model building because the product is an

understanding of the underlying mechanisms of the process.

The conjecture establishes the information required by a particular experiment.

The design should be of sufficient resolution to verify or disprove the conjecture. A

design is said to alias or confound two factors if the design does not allow them to be

distinguished from one another.

A design is said to be of resolution k if all nth order terms are not aliased with any

terms lower than order k-n, where n < k. For example, in an RIII design (k=3), the 1 st

order (n= 1) terms in a resolution design are aliased with 2 nd order or higher terms (k-

n=2). Thus, RIII designs are considered 1 st order designs because no Ist order terms

(main effects) are aliased with one another. Likewise, RIV designs are considered 1 st

order designs. Although 1St order terms in an RIV design are not aliased with any terms

lower than 3rd order, the 2 nd order terms are still aliased with one another. Resolution

five designs are ideal for 2 nd order models since the 1 st order terms are not aliased with

any terms lower than 4 th order, and the 2 nd order terms are "free of' confounding with

any terms lower than 3rd order. Screening designs most often use RIII or RIV

designs to determine WHICH of many variables under consideration are most important.

Designs of RV or higher are generally used to establish HOW the input variables affect

the response(s). Determining WHY the process behaves as it does entails a sequential

process of scientific inquiry intended to establish a theoretical basis for the observed

phenomena. The experimental designs used to address the fundamental WHICH, HOW,

and WHY questions provide the basis for empirical and mechanistic model building.(Box

and Draper, 1987; 11-14)

The designs in this study are all two level designs, where each input variable is at

either a high (+1) or low (-1) setting. These designs are used to estimate models with
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terms consisting of linear combin,'+;ons of the input variables and their products.

Appendix C provides the specific designs used in this thesis.

Analyzing an experiment utilizes the RSM techniques of multivariate regression

to analyze the data and identify the one best model (or metamodel). Several statistical

"goodness of fit" measures exist to assist an analyst in making this determination. This

information is frequently presented in an ANOVA table which summarizes the

information relating the least squares fit of the model to the data. The R2 value

represents a measure of how much of the structure of the data can be explained by the

model. An R2 value of one means the model fits the data perfectly. As the number of

terms in the model increases, the R2 value goes up (or possibly stays the same). The

adjusted R2 value takes into account the number of degrees of freedom used by the

model. Each term in the model uses one degree of freedom. The total available number

of degrees of freedom is equal to the number of data points.

The Mean Square Error (MSE) is an estimate of the variance of the process, if the

model is assumed to be correct. If the model is not correct, MSE is the sum of the

variance due to the process and the lack of fit.

The partial F statistic is the ratio of the sum of squares to the MSE for each term

in a specific model. It represents the probability that the coefficient associated with each

term is actually zero.

Mallow's CP statistic requires an estimate of the variance of the process under

study. If the number of terms in a model is much less than the CP statistic, then that

model does not mirror the process under study well.

Each of these statistical measures should be considered when analyzing possible

models. No single measure will identify the "best" model. Simplicity of the model is

also an important feature. A simple model may be more useful than a more complex

model that fits the data marginally better. For example, Newtonian equations of motion
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are less accurate than relativistic equations of motion, but when the velocities involved

are much less than the speed of light, the simpler Newtonian models are usually used. At

these velocities the differences between the output of the two models is negligible.

RSM has often been used to optimize a specific simulation output as a function of

the inputs (Harvey, Bauer, and Litko, 1993). Analysts use simulations to study complex

situations with complex input-to-output responses. Analysts use RSM to clarify the

relationship between the simulations' input variables and the simulations' output.

Once the relationship between the inputs and outputs is estimated as a metamodel,

the metamodel is optimized using a variety of techniques (Garrison, 1992). If the

metamodel is a linear combination of variables, the magnitude and sign of the coefficients

associated with the variables indicate the contribution each variable makes to the

objective. It is important to note that RSM techniques usually scale variables to +1 and -

1 values (or similar set of scaled values). To optimize the simulation output, the

metamodel estimated using the scaled variables must be transformed into the original

variables. Such a transformation -an change the relative values of the coefficients.

If the model is a complex, nonlinear model, then steepest ascent search techniques

are used to find the optimal solutions. Steepest ascent searches are commonly used

algorithms which attempt to locate the maximum (or minimum) values of nonlinear

functions. A commercial package known as GINO was used to optimize the complex

metamodels. GINO supports the optimization of nonlinear objective functions subject to

constraints.

Conclusio

TAC THUNDER is a complex computer simulation of a theater-level conflict. In

order to use it to estimate the effectiveness of a specific set of aircraft, the analyst must

use these forces optimally relative to the objectives of the campaign. RSM can be used
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to identify and understand the relationships that exist between simulation input (aircraft

apportionment) and simulation output (the results of the conflict). Additional sources of

information on the techniques and methods used in this research endeavor are listed in the

bibliography. Chapter three contains more information on the specific TAC THUNDER

experiments conducted as part of this thesis and the resulting metamodel.
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III. Baseline Experiment

This thesis used a sequential experimentation approach to optimize the use of

aircraft within a single TAC THUNDER scenario. Each phase in the investigation

provided information and insight used to refine and direct subsequent phases throughout

the research effort. The general iterative, experimental approach consists of conjecture,

design, experimentation, and analysis. This chapter presents the details of the

conjecture, design, experimentation, and analysis efforts associated with the baseline

experiment.

Conjecturet

Theater-level campaign analyses, using proper analytical treatment, provide the

only meaningful way of estimating the contributions of systems that perform disparate

functions in wartime (Goodson, 1993; 1). General Goodson defines proper analytical

treatment as mathematical search algorithms that find the best use of force. Comparisons

between force options are only meaningful if all the force options have been used to their

maximum effectiveness. Such comparisons are difficult because theater-level conflicts

are large and complex by nature, and the relationships between force employment and

battle outcomes are not known ahead of time. For combat models, like TAC THUNDER,

that do not optimize the apportionment of forces, an analyst must input the best

apportionment for each resource under study to insure that the outcomes of each conflict

reflect the capabilities of the resources available. This research was based on the premise

that it is possible to estimate the relationship between the air apportionment and the

outcomes of a theater-level scenario.

The objective of this thesis is to optimize the air apportionment with respect to

each of three measures of effectiveness (MOE): The movement of the forward line of
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own troops (FLOT), the strength of friendly ground forces when the opponent's advance

is halted, and the attrition of aircraft.

This research used an unclassified scenario based on Desert Storm. The original

scenario provided by CACI had to be modified. The original scenario modeled the

ground war phase of Desert Storm. That scenario was too unbalanced to show a strong

relationship between the best use of aircraft and the campaign outcomes. The forces in

the scenario were changed to reflect a strong Iraqi attack from Kuwait into Saudi Arabia

not long after they had invaded Kuwait. The coalition ground forces were outnumbered

and significant additional ground forces were 30 days away. The objective of the

coalition commander was to stop the Iraqi advance while minimizing the loss of coalition

air and ground power. It was presumed that once the FLOT was stopped, this objective

had been met. Additional forces would arrive later and eventually attaA, but the best use

of forces in those situations is not likely to be the same as during this initial advance. The

optimal air apportionment sought related only to halting the opponent's advance. The

optimal apportionment for subsequent operations was not part of this research effort.

Additional details of this scenario are available in Appendix A.

Desgn
There are 12 types of aircraft and 17 missions defined for this scenario. A 30 day

war would require 12xl 7x30 or 6120 variables to represent each aircraft/mission/day

combination. If the relationship between the inputs and the outputs were known and

linear, a linear program could optimize the air apportionment. Unfortunately, these

relationships are not known, so some other approach is required.

RSM was chosen as the best approach, given the nature of the problem, but it

required reducing the number of variables to a manageable level. The number of

variables impacts the number of simulation runs required to estimate the relationship
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between the air apportionment and battle outcomes. Simulating ten interations of a 30

day conflict took about six hours on a Sun workstation. The computational time required

to do hundreds of runs exceeds the time available for many study efforts including this

thesis effort. Studies accomplished after a decision is made tend to be of little value to a

decision maker.

Therefore, the following assumptions were made to simplify the problem:

- The opponent's air apportionment was fixed. It represented our best estimate of his air

plan. The simulation results applied only to this particular strategy.

- Only the "best" aircraft for each mission were included in this simulation: F-i 5's for air

superiority missions, F-15E's for INT and BAI, Fl Il's for OCA, A-10's for CAS. It is

assumed that if other aircraft were assigned to these missions, the results would not be

better (they may be the same or worse).

- A constant air apportionment is acceptable for the first 30 days of this scenario since the

situation remains relatively constant.

The input variables were the number of aircraft assigned to each of the missions

listed on pages 2-2 through 2-4. Not all of these missions necessarily contributed

significantly in this scenario. Therefore, a screening design was chosen to identify the

missions that were most significant. A second experiment could be run later using only

these signi .icant variables to develop a higher order model.

A 29-5,11 fractional factorial design was chosen for the initial experiment. It

would permit estimation of the main effects and could be supplemented with an

additional fraction, if necessary. The 29-5 indicates the experiment consists of 16 (24)

design points, and the "III" indicates that it is a resolution three design. Statgraphics

software was used to help design the experiment and analyze the data. Statgraphics

generated a design matrix that showed the value of each input variable for each of the 16

runs. These values were coded as +1 or - 1. Each mission had a maximum and minimum
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number of aircraft that were assigned to fly that mission on the first day of the war.

These values define the boundaries of the input variables. The estimated response surface

was confined to points bounded by these minimum and maximum values.

Exnerimentation

This section describes the implementation of the fractional factorial design.

Important decisions on the implementation had to be made. These decisions included

how many times TAC THUNDER would be run at a single design point, and what should

be the maximum and minimum number of aircraft assigned to each mission.

The output of a single TAC THUNDER run is a random variable. Additional runs

with identical inputs allow a more precise estimation of the mean response of TAC

THUNDER to those inputs. Additional runs also require more time and computer

resources. For this experiment, it was decided to repeat each design point ten times. Ten

repetitions reduced the uncertainty bounds on mean result at each data point. Additional

runs did not improve the uncertainty bounds enough to justify allocating the additional

resources.

The maximum and minimum number of aircraft assigned to each mission defined

the variable space for this experiment. The lower bound for each mission class was

selected to be the fewest number of aircraft a commander might realistically assign. For

example, a commander would never voluntarily have no defensive air capability. The

maximum value was selected as the largest number of aircraft a commander might assign

and still not encounter significant diminishing returns. Clearly, if enough aircraft are

currently assigned to destroy every interdiction target in the theater, the value of

additional interdiction sorties is very small. Appendix A contains the maximum and

minimum values of aircraft assigned to each mission class.
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The TAC THUNDER files that contain information on each squadron were

changed to reflect the appropriate number of each type of aircraft for each design point.

The TAC THUNDER air apportionment files, however, assign a percentage of each

mission class to specific missions rather than specific numbers. In the case of CAS and

BAI, this problem was solved by assigning 100% of the aircraft of a specific class

(ground support and multi-role) to those missions. The multi-role class was changed to

perform as if they were all F15E's. The available deep strike aircraft were divided

between OCA and INT missions. The air superiority class was divided between DCA,

FSWP, and AIRESC missions. The percentages of each mission class assigned in the air

apportionment file were adjusted so that the number initially assigned to each mission

reflected the high or low values associated with each mission for that run. For example,

if DCA, FSWP, and AIRESC were all at their max or min values (72 or 12) then the air

superiority mission class would be assigned 33% to DCA and AIRESC missions and

34% to the FSWP mission. If the design point required 72 FSWP and 12 DCA and

AIRESC missions, the air superiority mission class would be divided as follows: 75% to

FSWP, and 12.5 % to DCA and AIRESC respectively.

TAC THUNDER has a graphics post processor that creates user-defined macros

to display the results of each run. Due to the tremendous amount of data associated with

each run, a script was created that stored the information for the macros and then deleted

everything else before starting the next repetition of that run. This was a compromise

between the desire for large statistical samples and the limitations on time. Each iteration

took approximately 30 minutes to run on a Sparc II workstation. Three separate runs

were done simultaneously on one machine. Approximately 18 hours later, those runs

were finished and new set of runs was started. Occasionally the TAC THUNDER

program would generate an error that would stop a batch run and require restarting the

run.
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The output for each set of runs was condensed into one file and printed out four to

a page, double sided. It was necessary to look at the FLOT movement to determine

which day the FLOT movement reached its final position. The air and ground attrition

numbers used were those associated with that day. The 10 iterations of runs were

averaged to yield the response inputs for statgraphics. The design and the results of the

initial screening experiment are listed in Appendix C.

Analyll.
Estimating the Response Surfaces: Initially, the aircraft losses were expressed

as a percentage of the initial inventory available. This response was unsuitable because

the variance of the response was a function of the value of the response. One of the

fundamental assumptions of regression is that the variance of the response is constant

throughout the design region. Expressing the losses in terms of aircraft lost essentially

eliminated the problem of heteroschodasticity.

The original objective of the screening design was to identify WHICH of the

variables were important. However, high quality metamodels were estimated with the

data from the screening design experiment, rendering subsequent higher resolution

designs unnecessary.

The MOEs were strongly correlated to the experimental setting of the CAS and

INT missions. In Figures 3.1 through 3.3, a lowercase "c" or "i" indicates a low level for

CAS or INT, while a capital "C" or "I" indicates a high level. Larger FLOT values

represent a deeper Iraqi penetration into Saudi Arabia.
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Figure 3.1 FLOT results grouped by CAS and INT

Notice the overwhelming effect of CAS missions in Figure 3.1. The higher

proportion of CAS missions significantly reduced the Iraqi advance. INT missions also

contributed to significantly reducing the FLOT movement.
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Figure 3.2 Ground Strength results grouped by CAS and INT

In Figure 3.2, CAS and INT missions significantly influence the response of the

MOE (ground strength). Higher levels of CAS and INT generally led to higher levels of

remaining allied ground strength.
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Figure 3.3 A/C attrition grouped by CAS and INT

Figure 3.3 shows one of the most unexpected results of this study. The fewest

number of aircraft tended to be lost when CAS missions were at the high level. A closer

examination of the data revealed that the high level of CAS generally resulted in

objectives being met more expeditiously. The shorter conflict reduced the total number

of aircraft sorties. Fewer sorties exposed to the threat resulted in fewer aircraft lost.

Another possible explanation is that the CAS missions reduced the intrinsic air defenses

of the Iraqi units. These intrinsic air defenses consist of portable surface-to-air missiles

(SAM's), mobile SAM's, and gun systems used in air defense.

The rest of this chapter presents the metamodels estimated from the screening

design data. The ANOVA table associated with metamodels as well as diagnostic plots

are provided to assist the reader in understanding how the various metamodels were

estimated. The estimation of the FLOT model includes a description of how examination

of the residuals led to the inclusion of a nonlinear term in the metamodel.
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The ANOVA for the purely linear FLOT model is given in Table 3.1.

Table 3.1 ANOVA of FLOT model (Linear)

Input Variable Sum of Squares DF Mean Sq. F-Ratio P-value
CAS 2594274 1 2594274 309 .0000
INT 179289 1 179289 21.3 .0000
Total Error 109194 13 8400
Total Corrected 2882757 15

R2= 0.962 R2 (adjusted for degrees of freedom) = 0.956

While the adjusted R2 of the linear FLOT model was high, the distinct U-shape of the

residual plot in Figure 3.4 indicates the need for a higher order term in the model.

Ideally, the residuals reflect random deviations from the model that are only "noise"

terms and are distributed normally about a mean of zero. A distinct pattern in the plot of

the residuals, such as is found in Figure 3.4, indicates the presence of an unaccounted

effect. Adding the CASxINT interaction term to the model removed all discernible

patterns from the residual plot.
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Figure 3.4 Plot of residuals for FLOT

The final estimated FLOT model is:

FLOT = 1061- 4.460 * CAS - 3.852 *INT + 0.01525 * CAS * INT (Eq 3-1)

Where:

FLOT is the total advance of the enemy in kilometers.

CAS is the number of close air support sorties assigned.

INT is the number of interdiction sorties assigned.
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The ANOVA for the FLOT model is given in TABLE 3.2.

Table 3.2 ANOVA for the FLOT model (nonlinear)

Input Variable Sum of Squares DF Mean SQ. F-Ratio P-value
CAS 2594274 1 2594274 3362 .0000
INT 179289 1 179289 232 .0000
CAS*INT 99935 1 99935 130 .0000
Total Error 9259 12 772
Total Corrected 2882757 15

R2 = 0.9968 R2 (adjusted for degrees of freedom) = 0.9960

The adjusted R2 of .99 represents a nearly perfect fit. The F-test of the CASxINT

term is highly significant, and the new equation models the response almost perfectly.

Equation 3-1 matches the data representing the FLOT movement nearly exactly.

The estimated model for the ground strength remaining at the end of the first

phase of the campaign is:

GrdStr = 45.847 + 0.080444 * CAS + 0. 063021 * INT (Eq 3-2)

where
Grd Str is the combat firepower of the friendly ground forces when the FLOT is

halted.

Table 3.3 gives the ANOVA for the ground strength model defined in Equation 3-2.

Table 3.3 ANOVA for ground strength model

Input Variable Sum of Squares DF Mean Sq. F-Ratio P-value
CAS 1207.6 1 1207.6 462 .0000
INT 146.4 1 146.4 56 .0000
Total Error 34.0 13 2.6127
Total Corrected 1388 15

R2 = 0.9755 R2 (adjusted for degrees of freedom) = 0.9718
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An adjusted R2 of .97 represents an excellent fit. The residuals (which represent

the distribution of the error term) appear to be distributed normally based on the residual

plot and the normal probability plot of the residuals.

The estimated model for the aircraft attrition is:

AirAtr = 7.66+.160 * OCA + 0.0152 * AIRESC + 0.0477 * BARCAP

+0.1102 * FSWP - 0.0363 *CAS + 0.0475 * BAI

-0.001046 * OCA * INT + 0.1206* INT - 0.00199* AIRESC * FSWP

-0. 00681 * CAS */7NT

Where

AirAtr is the number of friendly aircraft lost.

OCA represents the number of OCA missions flown on the first day of the war.

AIRESC represents the number of AIRESC missions flown on the first day of the

war.

BARCAP represents the number of BARCAP missions flown on the first day of

the war.

FSWP represents the number of FSWP missions flown on the first day of the war.

BAI represents the number of BAI missions flown on the first day of the war.

Except for attrition, the input variables are constant.
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Table 3.4 gives the ANOVA for the air attrition model defined in Equation 3-3.

Table 3.4 ANOVA for the air attrition model

Input Variable Sum of Squares DF Mean Sq. F-Ratio P-value
OCA 141.0 1 141.0 161 .0001
AIRESC 139.8 1 139.8 159 .0001
BARCAP 32.8 1 32.8 37 .0017
FSWP 10.1 1 10.1 11.5 .0195
CAS 890 1 890 1014 .0000
INT 113 1 113 129 .0001
BAI 83.3 1 83.3 95 .0002
OCA*INT 29.4 1 29.4 34 .0022
AIRESC*FSWP 51.5 1 51.5 59 .0006
CAS*INT 200 1 200 227 .0000
Total Error 4.39 5 .87762
Total Corrected 1694.2 15

R2= 0.99741 R2 (adjusted for degrees of freedom) = 0.99223

Table 3.4 shows the fit for an 11 term model of the air attrition. The model for air

attrition is an excellent fit to the data and each of the terms appears to be significant

according to the partial F-test. Obviously air attrition is a complex process. The only

concern with this model is the low degrees of freedom for the error term.

Optimization of the Response Surfaces: GINO, a steepest gradient search tool,

was used to optimize the air attrition model. The other two models were of sufficient

simplicity to be optimized analytically.

3-13



The FLOT model (Equation 3-1) was optimized by taking partial derivatives with

respect to each of the variables and equating them to zero. The partial derivatives of the

FLOT model are:

aFLOT= -4.46+.01525 * INT
WLAS (Eq 3-4)

= _3.852+.01525 *CAS
aINT

The minimum estimated FLOT movement occurs for 253 CAS aircraft and 292

INT aircraft. Both of these values are outside the design region. The minimum estimated

FLOT movement, therefore, occurs on the boundary of the design region. In this case,

the minimum occurs for 216 CAS aircraft and 96 INT aircraft.

The ground strength metamodel (Equation 3-2) is a linear combination of CAS

and INT missions. The ground strength is maximized when CAS aircraft and INT

aircraft are maximized. Once again, the optimal result occurs for 216 CAS aircraft and

96 INT aircraft.

Complex nonlinear models such as the air attrition model are not as easy to

analyze. GINO, a commercially available analysis software, was used to optimize the air

attrition equation with constraints. The optimization problem was set up as follows:

Minimize: 7.664 + 0.1602*OCA + 0.01519*AIRESC + 0.0477*BARCAP +

0.1102*FSWP -0.03473*CAS + 0.04752*BAI - 0.001046*OCA*INT +

0.1206*INT- 0.001993*AIRESC*FSWP - 0.000651 *CAS*INT;

Subject to the following constraints:

OCA + AIRESC + BARCAP + FSWP + CAS + INT < xxx ( xxx represents the

maximum number of aircraft in the theater)
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.076885*CAS + .063021* INT + 45.8 > yyy (yyy represents the minimum

acceptable ground strength level. If yyy = 0 then this constraint is inactive.)

AIRESC - OCA - 4*INT < 0 (This constraint limits the number of escort

missions to the maximum possible based on the number of escortable missions

planned.)

OCA > 18 (The minimum number of OCA missions)

AIRESC > 12 (The minimum number of AIRESC missions)

FSWP > 12 (The minimum number of FSWP missions)

BARCAP > 12 (The minimum number of BARCAP missions)

BAI > 0 (The minimum number of BAI missions)

INT > 0 (The minimum number of INT missions)

CAS > 0 (The minimum number of CAS missions)

OCA < 96 (The maximum number of OCA missions)

AIRESC < 72 (The maximum number of AIRESC missions)

FSWP < 72 (The maximum number of FSWP missions)

BARCAP < 72 (The maximum number of BARCAP missions)

BAI < 98 (The maximum number of BAI missions)

INT < 96 (The maximum number of INT missions)

CAS < 216 (The maximum number of CAS missions)

The GINO problem was initally executed with the maximum number of aircraft

within the theater equal to 56. Setting all the variables at the lowest level results in a total

of 56 aircraft in the theater. The apportionment was recorded and then number of aircraft

in the theater was increased by 20. Again, the problem was solved and the apportionment

was recorded. Several starting values were used to avoid aircraft apportionment solutions

that were only local optima. The process continued, adding 20 aircraft to the theater at a
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time, until the maximum number of aircraft in the theater was reached. The optimal

apportionment allocated the next 216 aircraft to CAS missions. Once the number of

aircraft in the theater exceeded 272 (216+56), available aircraft were assigned to INT

missions. Finally, once the number of aircraft in the theater exceeded 368 (272+96), the

AIRESC and FSWP missions were maximized. No other missions contributed to

reducing the aircraft attrition.

Note that the same apportionment of 216 CAS, 96 INT, 72 AIRESC, 72 FSWP,

12 BARCAP, 8 SJAM, 9nd 18 OCA aircraft optimizes all three MOEs! For this scenario,

there was no tradeoff between air losses and ground losses or FLOT movement! The

optimal apportionment begins with CAS, then INT, and finally a mixture of AIRESC and

FSWP missions. CAS missions are the most effective mission for all three MOEs. INT

missions are also effective in all three MOEs. The FSWP and AIRESC missions reduce

the aircraft attrition while not having any significant effect on the other two MOEs.

Although not specifically included in all the models, BARCAP, FSWP, AIRESC, SJAM,

and OCA have positive minimum values. These terms would not appear as significant in

the model if the minimum levels satisfied the requirements levied by the associated

MOE's. SJAM and SSUP missions do not appear to have a significant impact on any of

the MOE's examined in this study.

Figures 3.5, 3.6, and 3.7 show how the MOEs vary as the number of aircraft in the

theater increases. These figures are based on the optimal allocation of aircraft given the

number of aircraft in the theater. The solid squares on the charts indicate the average

predicted response based on the number of aircraft in the theater. The hollow squares

indicate a 95% confidence limit value. The 95% confidence limit values were

calculated using Equation 3-5 with alpha equal to 0.1. Equation 3-5 is the equation for a

two sided confidence limit of 90%. Since the normal function is symmetric, choosing the
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worst case boundary yields a 95% boundary. Since the experimental design was

orthogonal, the covariance matrix is an identity matrix and Equation 3-5 reduces to 3-6.

A 1
Y±t(n-p-l,l1la)*sjXCX0  (Eq 3-5)

2

Where:

X0 is a vector representing the apportionment of aircraft

A1

Y± t(n-pl- 1, 1 s -lXX (Eq 3-6)
2

Figure 3.5 reveals that the metomodel predicts a negative number of aircraft lost

when there are more than 400 aircraft in theater. Clearly, negative numbers of aircraft

lost makes no sense. A reasonable interpretation of the chart is that the probability of

losing more than 5 aircraft (out of 400+) is less than 5%. The model does not accurately

estimate the mean number of aircraft lost at this extreme portion of the response surface.

Air Attrition

20

2 0 • -- -- -- -- - -- -- -- -- - -- -- -- - -- -- ---. . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 -------
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Figure 3.5 Aircraft attrition as a function of the number of aircraft in the theater

based on the optimal apportionment of aircraft
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Figure 3.6 Remaining ground strength as a function of the number of aircraft in the

theater
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Figure 3.7 The total FLOT movement as a function of the number of aircraft in the

theater

Figures 3.5 through 3.7 provide an analyst an upper bound on the MOEs as a

function of aircraft in the theater assuming an optimal air apportionment. No non-

3-18



material solution exists that will satisfy a requirement that exceeds the optimum MOE

responses depicted in Figures 3.5 through 3.7.

It is important to emphasize that the results of this research cannot be generalized

beyond the assumptions and limitations of the scenario examined. CAS missions seem to

be very effective in reducing FLOT movement, reducing the attrition of front line troops,

and reducing the number of aircraft lost. The first two results are expected since CAS

missions attack opposing units on the front lines. The third result was unexpected. Is it

due to the nature of this scenario or is it an anomaly of the TAC THUNDER model?

Figures 3.3 through 3.5 show the predicted response based on the optimal allocation of

aircraft. For this scenario, optimality is achieved by allocating aircraft first to CAS, then

to INT, and finally to a even mix of FSWP and AIRESC. Exact values are calculated

using GINO to optimize the allocation for a given number of aircraft assigned to the

theater.

It should be noted that the minimum number of aircraft assigned to the OCA,

BARCAP, FSWP, and AIRESC missions was set greater than zero. The absence of OCA

and BARCAP from the optimal apportionment implies that assigning additional aircraft

to these missions did not improve the MOEs examined in this study. It is unclear

whether the minimum number of OCA and BARCAP aircraft was sufficient to perform a

vital mission, or if these two missions did not contribute to accomplishing the overall

objectives.

It is clear that RSM can estimate the response of TAC THUNDER to various air

apportionments. Once the response surface has been estimated, the apportionment can be

optimized and tradeoffs identified. The response surface also provides the analyst with

insight into the performance of TAC THUNDER.
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IV. Sensitivity Analysis

Introducion

The optimal solution found in chapter three is based on a fixed scenario. Many of

the features of that scenario are not known exactly. A commander might well ask, "How

sensitive is the solution to changes in this fixed scenario?" Sensitivity analysis can be

used to investigate the effect of changes in the scenario on the "optimal" air

apportionment.

The capabilities of men and machines must be quantified and input into combat

simulations. Information on one's capabilities is usually more available than that of an

adversary. Therefore, the estimates of an opponent's capabilities are less certain than the

estimates of our own capabilities. The uncertainty about capabilities becomes even more

pronounced when one is estimating the future capabilities of armed forces. The sensitivity

analysis in this chapter focuses on two key parameters of the opponent's capabilities: their

Air-to-Air Probability of Kill (AAPk) and their Surface-to-Air Probability of Kill

(SAPk).

These values represent the probability that an enemy's attack will destroy an

aircraft, given that it has been detected and attacked. Increasing these values represents

an opponent with improved quality or utilization of its systems. In designing the

experiment for this analysis, the high level for both the AAPk and SAPk values were

established as twice their original values. This enhanced performance increased the

enemy's Pk values to a level comparable with our own capabilities. The low level used

was the same as in chapter three. Another candidate for sensitivity analysis was the set of

Air-to-Surface Pk (ASPk) values. However, the ASPk values were already at parity with

our own systems, and increasing them would not have been militarily realistic.

Therefore, the Air-to-Surface Pk values are not part of the sensitivity analysis.
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A second experiment was conducted, adding the AAPk and SAPk values to the

seven significant factors found in the original response surface. New response surfaces

were fit to estimate the relationship between the AAPk, SAPk, and an MOE. A worst

case response surface was also developed for each MOE. The worst case response

surfaces were optimized for each MOE using GINO.

These response surfaces indicate how TAC THUNDER responds to various

inputs and provides useful information for understanding TAC THUNDER. Several non-

intuitive effects were found which indicate the possibility that the TAC THUNDER

algorithms may not be operating in a manner consistent with our understanding of

combat.

Operational Uncertainty Analysis

A 29-5IV design was used for this sensitivity analysis. Ten repetitions were

again conducted at each of the 32 design points. A resolution four design is one in which

the linear terms associated with each variable are confounded only with third and higher

order terms. Some second order terms are confounded with other second order terms.

Appendix B describes how a simulated annealing program was developed to

optimize the assignment of input variables to design factors A through I. A ten variable

problem has approximately 10 factorial (approximately 4 million) combinations of

possible assignments. This program attempts to find the assignment which minimizes the

confounding of two factor interactions thought to be significant. Using this technique

permited estimation of the selected two factor interactions with a resolution four

experimental design in lieu of a more time consuming resolution 5 design. Appendix C

contains the data used in this chapter.
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Response surfaces were developed for each MOE using least squares regression.

The model for the FLOT is:

FLOT = 979+(-2.050CA+2.09FSWP+O.043 5BARCAP)AAPk-2.52CAS-

61.4SAPk-4.9INT+O.O426FSWP*BAI-.O 1921NTPOCA-

0.050BAI*OCA (Eq 4- 1)

Where

AAPk is the level (-1 to +1) of the Air-to-Air Pk value.

SAPk is the level (-1 to +1) of the Surface-to-Air Pk value.

OCA is the number of OCA missions assigned to aircraft on the first day.

FSWP is the number of FSWP missions assigned to aircraft on the first day.

CAS is the number of CAS missions assigned to aircraft on the first day.

/NT is the number of INT missions assigned to aircraft on the first day.

BAI is the number of BAI missions assigned to aircraft on the first day.

BARCAP is the number of BARCAP missions assigned to aircraft on the first day.

Negative one represents a Pk value equal to the baseline estimate. A positive one

represents a Pk value equal to twice the baseline case. The ANOVA for the FLOT model

in Equation 4-1 is given in Table 4.1.
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Table 4.1 ANOVA table for FLOT (sensitivity model)

Input Variable Sum of Squares DF Mean SQ. F-Ratio P-value
CAS 4137989 1 4137989 146 .0000
INT 695256 1 695256 26.3 .0000
SAPk 120786 1 120786 4.73 .0439
INT*OCA 124052 1 124052 4.69 .0414
BAI*OCA 136477 1 136477 5.16 .0332
AAPk*OCA 98014 1 98014 3.71 .0672
AAPk*FSWP 125325 1 125325 4.76 .0405
AAPk*BARCAP 125851 1 125851 4.76 .0405
FSWP*BAI 120565 1 120565 4.56 .0441
Total Error 536071 21 84135
Total Corrected 659161 31

R2 = 0.90 R2 (adjusted for degrees of freedom) = 0.87

Figure 4.1 shows how the blocking the observed FLOT movement by CAS and

INT levels graphically depicts the impact these two variables have on the response. In

Figure 4.1, a capital "C" or "I" indicates a high level of the CAS or INT variable. A

lowercase "c" or "i" indicates a low level of the CAS or INT variable.

FLOT grouped by CAS and INT
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Figure 4.1 FLOT grouped by CAS and INT

Blocking the data can often yield better models Unfortunately, grouping the data

this way does not really help to optimize the apportionment unless the optimization is
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restricted to a situation where the CAS or INT values are permanently set at their +1 or -I

values.

Figure 4.1 shows three uncharacteristic responses. If CAS or INT was the only

variable at the high level, then a large FLOT response could still occur. Likewise,

setting the other missions to their high level, except for CAS and INT, was sufficient to

stop the Iraqis quickly. Figure 4.1 is useful in visually presenting the impact that CAS

anm missions have on the FLOT MOE.

Similarly, the ground strength response surface was estimated as:

Grd Si" = 85.53 +(0.0001757AIRESC+O. 1 97SAPk-0.OO78BARCAP)AAPk-

0.0O74FSWP+0.OO64CAS+0.0 1956BARCAP-0.000489BAI-

0.00511 OCA+0.000248BAl*OCA+

SAPk(-0.OO72FSWP-0.00154CAS-0.003061NT) (Eq 4-2)

Where:

Grd Sir is the combat firepower of friendly ground units when phase one is

completed.

BARCAP is the number of BARCAP missions assigned to aircraft on the first day.

AIRESC is the number of AIRESC missions assigned to aircraft on the first day.
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Table 4.2 gives the ANOVA associated with the ground strength model associated

with Equation 4-2.

Table 4.2 ANOVA for ground strength model (sensitivity analysis)

Input Variable Sum of Squares DF Mean Sq, F-Ratio P-value
FSWP 1.5753 1 1.5753 11.3 .0035
CAS 15.2628 1 15.2628 109 .0000
BARCAP 3.5778 1 3.5778 25.7 .0001
INT 17.8503 1 17.8503 128 .0000
BAI .812812 1 .8128 5.83 .0266
OCA 1.08781 1 1.0878 7.80 .0120
AAPk*AIRESC 2.0503 1 2.0503 14.7 .0012
AAPk*SAPk 1.24031 1 1.24031 8.89 .0080
AAPk*BARCAP 1.75781 1 1.75781 12.6 .0023
FSWP*SAPk 1.48471 1 1.48471 10.7 .0043
CAS*SAPk .877813 1 .877813 6.29 .0239
SAPk*INT .690313 1 .690313 4.95 .0391
BAI*OCA .331553 1 .331553 23.8 .0001
Total Error 2.5106 18 .115943
Total Corrected 54.0971875 31

R2 = 0.9873 R2 (adjusted for degrees of freedom) = 0.9781

Each of the terms in this model are significant at the 5% level. The R2 and

adjusted R2 values are quite high. Figure 4.2 contains the normal plot of the residuals.

The model appears to account for most of the significant structure in the data.
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Figure 4.2 Normal plot of the residuals for the ground strength model (sensitivity

analysis)

Figure 4.3 plots the residuals versus the expected value. This plot also indicates

no significant structure can be observed to remain unaccounted for in the data.
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Residual Plot for Ground Strength
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Figure 4.3 Plot of residuals vs. predicted values of the ground strength model

(sensitivity analysis)

The air attrition response was the most difficult to estimate. The air attrition

model was the most complex of the original experiment, and the two main effects added

in the sensitivity experiment further complicated the model. Several alternatives were

considered in developing a parsimonious representation of the simulation response. With

respect to the air attrition MOE especially, the dividing line between significant and

insignificant factors was not obvious. Judgment is a necessary element in this
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investigative process. The largest model considered included the mean and 30 other

terms. The ANOVA for this model is presented in Table 4.3.

Table 4.3 ANOVA for air attrition

EFFECT 5 iSUMOF WUARES D MEAN 54F-RATIOA:AAPk 129.6051 1- 129.6•05' 3J.MEMT6 R-5(2: -0.,990

B:FSWP 310.051 _ 310.006 7.405536

CIRES 10.58 [1 10.581 0254 ADJ R-SC _ _ ._94___

U;CAS 1576.411 T 1576.4111 37.65801 |
E:SAPk- 195.0313 1 195.03131 4.658M,3 Mallows P: 31.10452
F:BARLAI 10.81 103.68 2.7542

G:ANT 41.4 1 4.1.41 0. 101 37.-s
H:BAI 3451 :3.M45 0.0B7073
T:OCA 17.11 1 197.01131 4.7=692

AB•*'G _ 11.52 1 11.521 0.2_7519
AC---H79.M8 1 79.38 1.896264

AD17_125 I 1.7112 B79 dfoferror F of.1 T of.05

AE 0.452 1 0.01078 21 .Al- -era -tCKD -i-EI1W 1 1.62.1 010868M 2D .7 43
AU -OF 73.205 1 73205i 1.748753 1is 2.99• ----T

AM -4CF 24.5 1 24.5_ 0585M 16 3.05 4.48
,AFF 90.45125 1 90.4_125 2.16O739 9 3.36 5.12

1-F- 15M.42 1 158.42 3.784407 5
EM-1 -270:2M 1 -27U.=213 -6.

BE 31.353 1301.3513 7.198812

BM 1 29."45 1 F!7708173
BI'ZGX5 1Z75125! 1Z751Z2b 0.302607

CD--F- - 1.86125; 1 41.861251 1
LID 1-41.9613 1 141.9613[ 3.391233

CI -H 32.40125 1 3_40125 0.774015
D-1 52. 1 5 1 _.242_77

E F 113.2513 1113.25131 2.7X I8
EG0.15125 1 0-T-O.151251 0.0036131

EHF -40.9512 1-40.W6251 0.972:7
El- 162 1 11 1621 .86,9•7
TOTAL EROR 41.8125 1 1 41.Ml125

Note the summary measures in the upper right comer of the table. Mallow's Cp

statistic requires an estimate of the variance of the process to be modeled. The variance

used (37.9) is the average of the 10 replication variances computed for each of the 32

design points. Also note the critical F statistic values on the right side of the table. They

provide the threshold criteria for determining the significance of individual terms in the

model. Obviously some of these terms are not significant.
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A useful means of comparing the candidate models is to plot the mean square

error as the number of terms in the model increases. Figure 4.4 shows a plot of various

air attrition models versus the mean square error of each model. Figure 4.4 helps to

identify when enough terms have been added and additional terms only model the noise.

It is possible to add terms that improve the fit for this particular data set which really

have nothing to do with the process. Any model for air attrition involving more than 23

terms is certainly overfitting the data. Any model with less than 11 terms will have an

MSE greater than 40, whereas the average sample variance for air attrition was 37.9.

Air Attrition

140

140

120 2-3-4-5----- 8- 91011-12- 13- 14- 15- 16- 17-18-------22-3242526

4-0

1 0 0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0 i , i i i i i I i i i i i ! I i ! ! I I i i i I I

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24. 25 26 27

# of farm In fte model

Figure 4.4 Graph of the MSE• vs. # of terms in the model

Table 4.4 shows the ANOVA for the first candidate model for air attrition. It

contains 23 terms including the constant term. The three candidate models were selected

from those I I to 23 terms. Model one had the highest R2 value but some of the terms
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have F-ratios of less than 3.36. For this model, any term with an F-ratio of less than 3.36

fails the significance test at the 10% level.

Table 4.4 Model 1 for air attrition (sensitivity analysis)

ANOVA FOR AIR ATIHITION (SENSITIVITY STUDY)

EFFECT IUMOF QUAES tDF EAN SQ, F-RATIO
•AýA/T k 1 __.__ i 1 129.&15i 13.83827 2R-SO: .981

B:FSbWP 310.00 1 310.005! 33. 105

R10.58 0 0 ADJ R-So: 0.931671
_ 176.411 1 1576.411 168.3176

E:bAek 195.03131 ----- T 195.0313, 2. NMallows CP: 1%.22404
-I" 103.68_1 103.681 11.07019 #oftarm:

4.5 4 1.4 0i 4.424929 37.9 as s2!
i:A J 3.W4 01 0ý 0 •

I:OA 197.113 -1 197.01131 21.03W41
AB1FG 11.52 0 0o

4FH7 1 79.381 8.475613
AD-TFI 1.71125 t0 d of error F of.1T F-of.05

,0 0i 0 21i 2.96
-a -2 0 0 200 2.97

AU -F 73M 1 732MI 7.81 191 299
77CF1 24.5 1 24.b5 2.61593 16 - 3.06 4.49

)90.45125 1 90.451;51 9.6572 91 3.36 5.12
B 1 "751W.42 I 158.42 15.914,92 51 4.06 .M
BD'43 1 _7002M 1 2702M 128.& _

BY - 301.3513 1 301.31 32.1607

BH -Acz 29.645 1 29.65 35275 _

C-1 41.86125 1 4612543
CD 141.9613 1 141.1 15.15758 _ _
CI9--H 2.4012 1- -S412 .459%67
DEF 52.02 1 5025541

El:; 113.2.513 1 113.25131 12.(09214
Cr01125 (3 0 _

EH. 40.951254t.1 4.372473i
8,29T21 ____ F5I

1 1 31 •

Table 4.5 is the ANOVA table for the second candidate model for air attrition.

Since it has fewer terms than the previous model, its R2 value is lower. Each of the terms

in this model passes the F-test for significance at the 10% level. But not at the 5% level.
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Table 4.5 Model 2 for the air attrition (sensitivity analysis)

ANOVAFOR AJR ATTRITION (SENSITIVITY STUDY)

EFFECT- - UF SuUMME5 OF7 WAN 5q FRATIO
A5Wk- k 129.6051 1 129.6051 5H974732! R-SO.: !0981

BFSvW _ > 310.F0 1 310.005i 14.2M
___SC 10.581 _ 0 _ ADJ R-SU: 0.841742

1576.411 11 1 b76.411i 72671854
E:S1k 1 195.A131 B`99US MaIIowP: 9.57652
F:BARCAP 10J.j 11 103.681 4.77901 #ofterm:i
U:INT 1 41.4051 0 01 0 3/.9 as s2iH:BAI j 3.6461 0 01

I:OLWA 197.0113 1 197.01131 9.082.129

_A -FG 11.52 0 01 (_
AC-TFH 

_179.M I 177.381 3.59382
AD _I- -- f= 0 01 - dfoferror- o.1 F rof.75
-A - 0.45125, 0 0 D 21 2. 43
AF- -H--I 01 M1.31 0 0 2 .9 4.35
AG -WB 7320---------5 --- 73-205! 3.3741 19, .99 4.38
AH -C3F 24.5 a0 O 0 161 3.05 4.749

FIT- 7 90.45125 1 90.451251 4.1M762 9 3.36 5.12
Bc 4G-1(3HT58.42 1 158.42 7.M0309
BD74T-3 -270:2M3 I 270.2M1 12.459

BE _ 3_ 1.313 1 30.1 -_ 13.89216
G29.645 0 0 0

1 Z•_ /175125 0 0b 0
D-HI41.Ml125 01 01 -- 0

i(3 - 141.9613 1 14T.96131 6
C I -DT H 32.401251 0 V0 a
DrE 52.02, 0 0 0

EF 1132.51• 1 113.25131 5 220_1
EGb 0.15 5 . ............- 0 0.

ER 140.95125 0
_E_ 1 _ 1 1621 7.468125

TOTWIOI ,•707b 1O 21.347.! ! !311

Table 4.6 is the ANOVA for the third candidate air attrition model and has the

fewest number of terms considered. All the terms are also significant at the 10% level.

This model has two advantages over the two previous models. It is simpler and the

estimate for the variance of the air attrition process matches the average variance of the

TAC THUNDER runs.
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Table 4.6 Model 3 for air attrition (sensitivity analysis)

ANOVA FOR AIR ATTRITION (SENSIl VITY STUDY)

EFFECT5UMUFbUUAFE5 OF ME:AN SQa F-RATIO
A_ 129.m 1. 3372443RSQ
B:FSWP 310.0.g l1 310.005_ U.6652

_ _RE 5C 1.5 0 01 ADJ R-5_: 0.719625
O:CA _ 1576.411 15 157.4111 41.019W I

E:7~ 95.0m1 I 195.0313J 5.074895 MalloWs Ur: 1.9

F:ACP103.6B 0 01 0D #ofta1rm:I 11--

G:INT 01 0 37.9 as s2
H:BAJ .4 01 0
:OLCA- 197.013 197.13 5.12641

AB +-•G-1.5 01 0

Ac-+FH 79. 0_ O
AD-IFT 1.71125 0 01 - dtoferror F of.1TF o.5R
AlE 70.451 U; 0! 0 2T 2 --- 4M3
WrzM - 4G-3H-DI 1.62. 0 1 O2 2.97 4-35

AU -OBF 732M 0 is 2._ _ 4M
AH ICF24.5C 0 O _305 44

BL3-1GHR 158.42 I 15W.42 4.1222036
BD-ZI 270.281 I 2700M131 7.032971
BE 301.3513 1 301.35131 7.W4441
BH C-t(( 29.W4 U 0 O1

-IDG- 71275M2B ( 0I 0
CDRF-HI 41.86125 _

LMD 141.961 1 141.96313.693964
LI -FDH 32.40125 0 O 0

DE 5p.2 0_ _

EF11..1 0
EG0.5150 01 0EH409125 _ 1°_

El162, 1 1.4.215391
I 1 _

TUTAUEARURM W/AM2BWm

The third model has a mean square error of 38.4. This value agrees nicely with

37.9, which is the estimate from the 10 repetitions at each of the 32 design points. Model

three was chosen because the MSE is approximately equal to the variance of the data. All

of its terms are significant at the 10% level.

The ANOVA tables show which two factor interactions are aliased with other two

factor interactions. Only one of each confounded pair is believed to be potentially

significant. Interactions included in the first design and shown to be insignificant were

assumed to continue to be insignificant. By allowing this two factor aliasing, the

significant two factor effects could be estimated without increasing the resolution of the
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experiment to a resolution five design. A resolution five design would have required

twice as many design points but no two factor interactions would have been aliased with

any other two factor interaction.

The equation resulting from the third model is:

Air Atr= 10.95 +(-1.0316+.1023FSWP-.O8330CA+.0703AIRESC)SAPk+2.013*AAPk+

.2075FSWP-.006499CAS+. 1009INT+. 1995 OCA-.002242INT* OCA-

.00247FSWP*AIRESC+. 1038AIRESC (Eq 4-3)

Figure 4.5 shows a plot of the residuals of this air attrition model plotted against

the predicted value. No significant pattern was observed in Figure 4.5 The presence of

such a pattern would be evidence in favor of a model with more terms.
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Residual Plot for Air Attrition
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Figure 4.5 Plot of the residuals vs. the predicted values for the Air Attrition

model (sensitivity analysis)

Figure 4.6 shows a normal probability plot of the residuals of the air attrition

model. The presence of data points which do not lie along the line indicates that some

additional structure remains unexplained by the current model.
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Normal Probability Plot
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Figure 4.6 Normal plot of the residuals of the Air Attrition model (sensitivity

analysis)

The model selected contains the most significant terms and predicts a variance

approximately equal to the estimate of the variance found in the data. However, the

difficulties in selecting a "good" air attrition model indicate that the air attrition process is

complex.
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Analmb

The three models developed from the sensitivity experiment form the basis for the

analysis of the relationship between the various outputs and the two operational

uncertainty variables. The partial derivative of each model with respect to an operational

uncertainty variable indicates how that MOE tends to change as the uncertainty variable

increases. The partial derivatives represent the response of the MOE to changes in the

uncertainty variables; an important aspect in analyzing the behavior of TAC THUNDER.

Intuitively, it is expected that as the opponents become more capable, their results should

improve.

The partial derivative of the FLOT with respect to AAPk is:

ZuW= -2.050CA + 2.09FSWP+.O435BARCAP (Eq 4-4)

OCA missions become more effective as the opponents aircraft become more

lethal in air-to air engagements. Historically, it is easier to kill aircraft on the ground than

in air-to-air combat. FSWP and to a lesser extent BARCAP missions become less useful

in the sense that they generate more losses per mission than previously. It is interesting

to note that there is not a significant decrease in the effectiveness of CAS as the AAPk

increases.

The partial derivative of the FLOT with respect to SAPk is:

= 61.4 (Eq 4-5)

Figure 4.7 shows the FLOT observations grouped by the low and high values of

the SAPk and arranged in ascending order. As seen in Figure 4.7, the net effect of

doubling the opponent's SAPk was that they made less progress on the ground! This

response is very nonintuitive. One possible explanation lies in the sortie assignment

algorithm of TAC THUNDER. The increased SAPk value might change the way TAC

THUNDER organized the strike packages which attacked ground targets.

If the increased SAPk value (which the algorithm uses!) changed the way the

aircraft were assigned into packages and these packages assigned to targets, then perhaps
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these new assignments were more effective at stopping FLOT movement. Clearly

something unusual is going on here.

FLOT grouped by SAPk setting

1200

1000

800

I:I
200 1

400-

SAPk setting

Figure 4.7 FLOT vs. SAPk values

The partial derivative of the ground strength with respect to AAPk is:

= -0.000176AIRESC +.197SAPk - 0.0078 BARCAP (Eq 4-6)

AIRESC and BARCAP both become less effective (for maximizing the ground

strength) when the AAPk values increase.

The partial derivative of the ground strength with respect to SAPk is:

S= -O.O072FSWP - 0.001 54CAS - 0.00306INT + 0.1 97AAPk (Eq 4-7)
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As the opponent's SAPk value increases, the contribution made by each FSWP,

CAS, and INT sortie is reduced.

The partial derivative of the air attrition with respect to SAPk is:

-z- = 2.0125
MAa. (Eq 4-8)

When the opponent's AAPk value changed from the low setting to the high

setting, an average of four additional aircraft were lost.

The partial derivative of the air attrition with respect to SAPk is:

a',11RAsT= -1.0316+O.102FSWP -0.08330CA+.O7033AIRESC (Eq 4-9)

As the SAPk value increases, the value of OCA missions decreases. This

response is reasonable since airfields tend to be heavily defended against aircraft attacks.

In contrast, the value of FSWP and AIRESC missions increases as the enemy's SAPk

increases. It may be that these aircraft are more survivable against surface-to-air threats.

If attacks are made against these sorties instead of other, more vulnerable, sorties, then

the average number of aircraft shot down would be reduced.

Worst Case Analysis

This section considers how the optimal apportionment found in chapter three

performs against a worst case combination of the SAPk and AAPk values. Simply setting

SAPk and AAPk to their highest level might not be the worst case. Worst case versions of

Equations 4-1 through 4-3 were found by selecting the worst value for each term in the

model. For example, the coefficient associated with OCA in Equation 4-3 is 0.1995 +/-

0.0833, depending on the value of the SAPk term. For air attrition, more aircraft are lost

as a coefficient increases. Therefore, 0.2828 was the value used for the OCA coefficient

in the worst case air attrition model. Using this technique, no matter what the

apportionment, these new equations will represent the worst possible values.
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FLOT Worst case:

FLOT= 1045+.0435BCAP-2.52CAS-4.9INT+.03FSWP+.0426FSWP*BAI-

.0192INT*OCA-.050BAI*OCA+4.47OCA-.4765BAI (Eq 4-10)

Ground Strength Worst case:

Grd Str = 85.38 -.0001757AIRESC-.0144FSWP+.0049CAS+.00 I176BARCAP-

.000489BAI-.005 11 OCA+.000248BAI*OCA+ .306INT) (Eq 4-11)

Air Attrition Worst case:

Air Atr = 14 +.3098FSWP-.006499CAS+. 1009INT+.28280CA-

.0022421NT*OCA-.00247FSWP*AIRESC+. 174AIRESC (Eq 4-12)

Optimizing these equations for their respective MOEs yields the best worst case

apportionment for each MOE. Figures 4.8 to 4.10 present the results of these

apportionments. Unlike the apportionment in chapter three, each of the three MOEs has a

different optimum apportionment. Figure 4.8 shows the predicted FLOT as a function of

the number of aircraft in the theater. The aircraft have been optimized for each of the

three MOEs. For a given number of aircraft, the top bar represents the optimal

apportionment to minimize the loss of aircraft. The middle bar represents the optimal

apportionment to maximize the ground strength. The bottom bar represents the optimal

apportionment to minimize the FLOT movement.
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Figure 4.8 FLOT outcomes as a function of the apportionment optimized for air

attrition, ground strength, and FLOT

Similarly Figure 4.9 shows the predicted ground strength value of the three sub optimized

air apportionments.
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GRD STR VS. # OF A/C
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Figure 4.9 Ground strength comparisons based on # of A/c Figure 4. 10 shows the

predicted aircraft attrition as a function of the number of aircraft available.
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Figure 4.10 Aircraft attrition as a function of # of aircraft and MOE optimized
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Figures 4.8 to 4.10 show how optimizing the air attrition or ground strength

causes a large FLOT result. For this scenario at least, a low casualty rates should not be

the primary objective. Minimizing the FLOT movement does not result in a large

increase in air or ground losses.

The sensitivity models were compared to the baseline models by substituting -I

for the SAPk and AAPk terms in Equations 4-1, 4-2, and 4-3. The predicted values for

the three MOE's were generated for 26 design points. These design points were the 16

used in chapter three and the eight design points in chapter four that had SAPk and AAPk

settings of-1. Ideally, the predictions of the baseline models would be highly correlated

with the predictions of the sensitivity models. The correlations between the baseline

models and the sensitivity models for the air attrition, ground strength, and FLOT MOE's

were .52, .61, and .76, respectively. Appendix D contains plots of the baseline models'

predictions versus the sensitivity models' predictions. No nonlinear relationship was

observed in these plots. Several interesting features were observed but the timing of this

research precluded further investigation. Apparently, there were significant differences

in TAC THUNDER's responses that were not accounted for in the SAPk and AAPk

terms.

Concalusin:

CAS missions proved beneficial under the range of operational uncertainty

variables. No other mission category was uniformly beneficial under an absolute worst

case scenario. Interdiction could also help the FLOT MOE while only increasing the air

attrition slightly. In view of these results, the baseline apportionment found in chapter

three is still valid and fairly robust. After these two missions, the baseline added a mix of

air escort and interdiction missions. Under the worst case analysis, these missions

reduced the overall effectiveness of the apportionment.
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Response surface models allow a quick response to what-if questions without re-

running a time-consuming model. As long as the region of interest has been covered in

the design, RSM gives the analyst insight into the behavior of the model and a better

ability to respond to new questions by the decision maker.

Such insight into TAC THUNDER's behavior would be quite useful in the

verification, validation, and accreditation (VV&A) process. A user (or designer) of a

model wants to know that the model behaves in a reasonable, rational way. It must

simulate the process in a manner appropriate for the intended application.

Several interesting observations were made by analyzing how TAC THUNDER

responds to increases in the probability of kill values. When the Pk values for the surface

to air threats were increased for the opponents, the opponents had less success with the

FLOT MOE. Intuitively one would expect the opponents to make more progress. One

possible explanation is that the sortie generation algorithm used the change in Pk values

to change the way the sorties were organized and flown. The goal of the sensitivity

experiment was to observe the effect on the baseline case, given that the opposing force

was more effective than anticipated. If the algorithm behaves in such a manner, it is

impossible to change how well the opponents fight without changing our perception of

their capabilities. Another possibility is that there could be a problem with the algorithms

that use the SAPk values. One experiment does not prove anything, but it does identify

an area of concern. Additional work should be done to understand how TAC THUNDER

behaves. It is possible that our intuition is wrong and these results might give us better

insight into theater level combat. That is one of the primary purposes of all models: to

act as a catalyst for insight.

4-24



V. Conclusions and Recommendations

SummaR

The purpose of this thesis was to demonstrate that RSM techniques could be used

to optimize the air apportionment in a TAC THUNDER scenario. An unclassified

scenario was developed and its air apportionment optimized for three MOEs: FLOT,

ground strength, and air attrition. The screening design provided sufficient data to model

the relationship between the air apportionment and the three MOEs. The metamodels

which quantified the relationship between the model inputs and the MOEs were

optimized with constraints appropriate to the study. These metamodels allow an analyst

to quickly answer what-if questions from the decision maker as long as the quest.. ns

concern the region bounded by the original design space.

In the first phase of this investigation (chapter three), one apportionment

optimized all three MOE's. The baseline apportionment, in rank order, is as follows:

1 - Close Air Support

2 - Interdiction

3 - An even mix of Air Escort and Fighter Sweep missions.

The Air Escort and Fighter Sweep missions reduced the air attrition while having no

significant effect on the other two MOEs.

The second phase in this investigation examined the sensitivity of the response

surfaces to two operational uncertainty variables. Close Air Support proved to be useful

in all cases for all three MOEs. The response of the three MOEs to changes in the

Surface-to-Air Probability of Kill (SAPk) value was quite interesting. As the opponents

SAPk increased, they made less progress on the ground even though they did shoot down

more of our aircraft. An explanation for this result needs to be found. This is an

excellent example of how RSM can provide understanding of the behavior of complex
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simulations thereby supporting the verification, validation, and accreditation (VV&A)

process.

Recommendations for Follow-On Efforts

It is difficult (and incorrect) to generalize with data from only one phase of one

scenario. Additional study needs to be done on other phases of this scenario. Similar

studies using different scenarios would help to generalize the results and support efforts

to use TAC THUNDER to examine AF doctrine. The sensitivity of the air apportionment

to changes in the opponent's air apportionment needs to be studied. The new Theater-

Level Model, being developed at the Naval Post-Graduate School, uses a simpler air

apportionment that would be ideal for studying the air apportionments of opposing forces

using RSM and game theory. Classified studies could be done to see if the results

corroborate this study. A detailed study could be made of how well the metamodels

predicted the TAC THUNDER output.

An important area of study is multi-phase operations. Is it appropriate to optimize

each phase of a campaign separately? Or, does the entire campaign need to be optimized

simultaneously? How can a multi-phase campaign be optimized with limited time and

computing resources?

Finally, VV&A efforts on combat models could incorporate RSM techniques. It

is difficult, if not impossible, to prove that a model "correctly" models theater-level

warfare. Aggregation and assumptions are fundamental components of a theater-level

combat simulation. Identifying the relationship between the inputs and outputs of a

complex simulation should provide evidence that the model is working as expected or

that the models behaves in unexpected ways. In that case, either the model or our

expectations would need to be changed.

Stochastic annealing proved an effective way to match the variables to the factors

in the experimental design stage. This technique may allow experiments with large
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numbers of variables to reduce the number of design points needed; if some of the

factors can be considered negligible, then a design that does not alias any of the

nonnegligable terms may be sufficient. Additional work needs to be done in this area.

Collcluion

This thesis has demonstrated that RSM techniques can be used to optimize the air

apportionment in a TAC THUNDER scenario. It is limited to those cases where the

number of variables can be reduced to a manageable level, such as was done here by

grouping the aircraft and optimizing only one phase of a campaign. Since the best use of

force is required to study tradeoffs between force mixes, this technique could support

many combat effectiveness studies and acquisition decisions.
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This appendix provides a description of the TAC THUNDER scenario used in this

thesis effort. It will describe the order of battle for both sides including units, squadrons,

number and type of aircraft.

Those files modified from the standard unclassified Middle East scenario are also

provided.

The order of battle was:
TANKS APC HELO ARTY INF AIR DEF

1St Saudi Div 348 318 42 132 1000 12
82nd Airborne 0 270 42 54 1500 12
24th Mech Inf Div 290 270 42 126 1000 12
1St MEF M4R l1a 42 132 1000 12
TOTAL 986 1176 168 444 4500 48

AIRCRAFT:
F-15 36-216
F-15E 0-194
A-10 0-216
EF11 8-30
Fill 18-72
WEASEL 0-24

IRAQI FORCES:

UNIT TANKS APC HELO ARTY INEf ADGUN.SAM
ARMOR DIV (x7) 325 250 12 150 1000 16 8
MECH DIV (x3) 225 650 12 150 1200 16 8
INF DIV (x8) D 150Q _.Q_ I5Q 30Q0 16 O
TOTAL 3670 4900 120 2700 34600 288 80

AIRCRAFT:
MIG29 25
MIG23 100
MIG21 150
MIRAGE F1 125
SSU25 50

AIR DEFENSE COMPLEXES: 10 SA-3 SITES
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The sortie rates used included a maximum surge rate for the first six days of the

conflict and a maximum sustained rate. These sortie rates by aircraft were:

A/C DAY.IN.THEATER. .AUTH.QTY.SORT/DAY ..AC.MAX.SORT/DAY
A-10 1.00 3.00 4.00

6.00 2.00 3.00
RF-4 1.00 2.50 3.00

6.00 1.50 2.00
F-111 1.00 2.00 2.50

6.00 1.20 1.50
F-15 1.00 2.50 3.00

6.00 2.20 2.50

MIG-23 1.00 3.00 3.00
6.00 1.20 1.20

MIRAGE F- 1 1.00 3.50 4.00
6.00 2.70 2.70

MIG-21 1.00 3.00 3.00
6.00 1.20 1.20

MIG-29 1.00 3.00 4.00
6.00 2.50 2.70

SU-25 1.00 2.20 2.20
6.00 .80 .80
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APPENDIX B

This appendix provides a description of the simulated annealing code developed

in this thesis effort. The code is also provided.

BACKGROUND

High resolution designs for experiments with a few variables are simple to design

and carry out. As the number of variables increase, the number of individual experiments

needed to achieve the same level of resolution increases rapidly. With 10 variables, a

fractional factorial design requires 64 runs to achieve resolution five. If some of the two

variable interactions are known (or assumed) to be insignificant, then a smaller design

can be used where none of the significant two variable interactions are confounded with

any of the other two variable interactions. This allows a reduction in the resources

required to carry out the experiment.

Each variable in the experiment must be assigned to one of the columns of the

experimental design matrix. For a given design, the confounding of each factor is fixed.

For example, Factor A*Factor B is confounded with Factor I*Factor J. If the variables

are assigned to factors A, B, I, and J such that AB and IJ are not both significant, than this

confounding is not a problem. The number of ways 10 variables can be assigned to 10

factors is 10! or approximately 4 million combinations.

Simulated Annealing

Simulated annealing is a recent technique inspired by the physical process in

metals. This technique uses a temperature function that is analogous to the temperature

in the cooling metal. As the temperature drops, the atoms in the metal tend to arrange

themselves in lower energy states. In this implementation, the energy state is the value of

the objective function.
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Each variable pair represents an important effect. Weights are assigned to each

pair that correspond to the magnitude of their significance. These weights are assigned

by the experimenter based on his knowledge of the process under study and previous

experiments. Each assignment of variables to factors has a value equal to the sum of the

weights of all the confounded pairs. If none of the important variable pairs are

confounded with other variable pairs, then the value of that assignment is zero. A value

of zero is the best possible value. It may not be possible to deconflict every variable pair.

The researcher could accept a sufficiently low value if appropriate.

The Code

The following is a description of each section of the code:

1-90 Define the variables.

100-190 Define the initial assignment

200-405 Define the important variable pairs.

410- 500 Define the weights associated with each important variable pair.

1000-3390 Check each set two factor interactions. If more than one is important then add the sum of

their weights to the objective function.

3400-3490 Implement the temperature function that controls how many iterations will be made at

one temperature setting. Once the correct number of iterations have been made, the

temperature decreases.

4000-4005 If the test assignment has a lower value than best assignment found so far, it becomes the

new best assignment.

4<10 If the test assignment is accepted as the new current assignment, then it becomes the new

current assignment.

5000-6000 Generate a new test assignment by perturbing the current assignment. Firs variable

assignments are switched. Two variables are selected randomly and switched repeatedly.
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The number of exchanges are a function of the temperature. At high temperatures the

mean number of switches is large. As the temperature falls, the average perturbation

becomes smaller.

10000-10200 Subroutine which updates the best solution found.

11000-11200 Subroutine which updates the current solution.

20000-20200 Print the best solution found by the end of the search.

5 RANDOMIZE
10 REM Program for assigning variables for RSM and finding the number of
20 REM confounded terms.
30 DIM V(40): REM These are the values for the cross terms.
50 DIM TF$(40): REM these are the important cross terms.
60 DIM AS(10): REM these are the factors.
70 DIM P$( 10): REM these are the best solution found.
80 DIM C$(10): REM these are the current solution.
90 TEMP = 5: REM the initial temperature.
100 REM Initial settings for 10 variables to the 10 factors
I 10 A$(l) = "5": AS(2) = "9": A$(3) = "3":
120 AS(4) = "8": A$(5) = "I": A$(6) = "0"
130 A$(7) = "4": A$(8) = "2": AS(9) = "7": TC = 999
140 AS(10) = "6": TB = 999: REM TB is the best T value to date
150 FOR i = I TO 10
160 P$(i) = A$(i)
170 NEXT i
200 REM Defining the interaction terms TF$
210 REM aa=1, ag=2, ga=3 oca=4 eair=5 barcap=6 fswp=7 at=9 bai=0
220 TF$(1) = "49": TF$(2) = "94"
230 TF$(3) = "57": TF$(4) = "75"
240 TF$(5) = "89": TF$(6) = "98"
250 TF$(7) = "14": TF$(8)= "41"
260 TFS(9) = "15": TFS(10) = "51"
270 TF$(1 1) = "16": TF$(12) = "61"
280 TF$(13) = "17": TF$(14) = "71"
290 TF$(15) = "18": TF$(16) = "81"
300 TFS(17) = "19": TF$(18) = "91"
310 TF$(I 9) = "10": TF$(20) = "01"
320 TF$(21) = "12": TFS(22) = "21"
330 TFS(23) = "13": TF$(24) = "31"
340 TFS(25) = "24": TF$(26) = "42"
350 TF$(27) = "26": TFS(28) = "62"
360 TF$(29) = "34": TFS(30) = "43"
370 TF$(3 1) = "37": TF$(32) = "73"
380 TF$(33) = "38": TF$(34) = "83"
390 TF$(35) = "93": TFS(36) = "39":
400 TF$(37) = "03": TFS(38) = "30": REM remove 03 and 30 and 0 value sol exists
405 TF$(39) = "**": TF$(40) =
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410 REM Now to enter the values for the cross terms.
420 V(I) = 100: V(2) = V(l)
421 V(3) = 99: V(4) = V(3)
422 V(5) = 98: V(6) = V(5)
423 V(7) = 95: V(8) = V(7)
424 V(9) = 80: V(10) = V(9)
425 V(1 1) = 58: V(12) = V(1 1)
426 V(13) = 28: V(14) = V(13)
427 V(15) = 25: V(16) = V(15)
428 V(17) = 23: V(18) = V(17)
429 V(19) = 21: V(20) = V(19)
430 V(21) = 20: V(22) = V(21)
431 V(23) = 12: V(24) = V(23)
432 V(25) = 8: V(26) = V(25)
433 V(27) = 7: V(28) = V(27)
434 V(29) = 5: V(30) = V(29)
435 V(31) = 4: V(32) = V(31)
436 V(33) = 3: V(34) = V(33)
437 V(35) = 2: V(36) = V(15)
438 V(37) = 2: V(38) = V(17)
439 V(39) = 1: V(40) = V(19)
1000 REM now to count the confounding. each 100 is a constraint
1010T=0: xl =0
1100 FOR i = I TO 38
1110 IF A$(l) + A$(2) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1120 IF AS(9) + AS(10) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1160 NEXT i
1170 IF xl > 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
1180 xl = 0: Vtemp = 0
1200 FOR i = 1 TO 38
1210 IF AS(l) + A$(3) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1220 IF AS(8) + AS(10) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1260 NEXT i
1270 IF xl > I THEN T = T + Vtemp: REM T = total value of confounding interactions
1280 xl = 0: Vtemp = 0
1300 FOR i = I TO 38
1310 IF AS(l) + AS(4) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1320 IF AS(7) + AS(10) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1360 NEXT i
1370 IF xl > 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
1380 x1 = 0: Vtemp = 0
1400 FOR i = 1 TO 38
1410 IF AS(l) + AS(5) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1420 IF A$(6) + A$(10) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1460 NEXT i
1470 IF xl > I THEN T = T + Vtemp: REM T = total value of confounding interactions
1480 xI = 0: Vtemp = 0
1500 FOR i = 1 TO 38
1510 IF AS(1) + AS(6) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1520 IF AS(5) + A$(10) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1560 NEXT i
1570 IF xl > 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
1580 x1 = 0: Vtemp = 0
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1600 FOR i = I TO 38
1610 IF AS(l) + AS(7) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1620 IF AS(4) + AS(10) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1660 NEXT i
1670 IF xl > I THEN T = T + Vtemp: REM T = total value of confounding interactions
1680 xI = 0: Vtemp = 0
1700 FOR i = I TO 40
1710 IF AS(I) + AS(8) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1720 IF AS(3) + AS(10) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1760 NEXT i
1770 IF xl > I THEN T = T + Vtemp: REM T = total value of confounding interactions
1780 xl = 0: Vtemp = 0
1800 FOR i = 1 TO 38
1810 IF AS(I) + A$(9) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1820 IF AS(2) + AS(10) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1860 NEXT i
1870 IF xl > 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
1880 xl = 0: Vtemp = 0
1900 FOR i = I TO 38
1910 IF AS(1) + A$(10) = TF$(i) THEN xl -= xl + 1: Vtemp = Vtemp + V(i)
1920 IF A$(2) + AS(9) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1930 IF A$(3) + AS(8) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1940 IF AS(4) + A$(7) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1950 IF AS(5) + A$(6) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
1960 NEXT i
1970 IF xl > 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
1980 xl = 0: Vtemp = 0
2100 FOR i= 1 TO 38
2110 IF A$(2) + A$(3) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
2120 IF AS(8) + AS(9) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
2160 NEXT i
2170 IF xl > I THEN T = T + Vtemp: REM T = total value of confounding interactions
2180 xl = 0: Vtemp = 0
2200 FOR i = I TO 38
2210 IF AS(2) + AS(4) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
2220 IF A$(7) + AS(9) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
2260 NEXT i
2270 IF xl > I THEN T'= T + Vtemp: REM T = total value of confounding interactions
2280 xl = 0: Vtemp = 0
2300 FOR i = I TO 38
2310 IF A$(2) + AS(5) = TF$(i) THEN xI = xI + 1: Vtemp = Vtemp + V(i)
2320 IF AS(6) + AS(9) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
2360 NEXT i
2370 IF xl > I THEN T = T + Vtemp: REM T = total value of confounding interactions
2380 xl = 0: Vtemp = 0
2400 FOR i = I TO 38
2410 IF A$(2) + A$(6) = TF$(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
2420 IF A$(5) + AS(9) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
2460 NEXT i
2470 IF xl > 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
2480 xI = 0: Vtemp = 0
2500 FOR i = 1 TO 38
2510 IF AS(2) + AS(7) = TFS(i) THEN xl = xl + 1: Vtemp = Vtemp + V(i)
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2520 IF AS(4) + AS(9) =TFS(i) THEN xlI xlI + 1: Vtemp = Vtemp + V(i)
2560 NEXT
2570 IF xlI > I THEN T = T + Vtemp: REM T = total value of confounding interactions
2580 x1= 0: Vtemp= 0
2600 FOR i= I TO038
26 10 IF AS(2) + AS(8) =TF$(i) THEN xlI xlI + 1: Vtemp = Vtemp, + V(i)
2620 IF AS(3) + AS(9) =TFS(i) THEN x I = x I + 1: Vtemp = Vtemp + V(i)
2660 NEXT
2670 IF xlI> I THEN T = T + Vtemp: REM T = total value of confounding interactions
2680 xlI = 0:Vtemp=O0
2700 FOR i= 1 TO038
27 10 IF A$(3) + AS(4) =TFS(i) THEN xlI = x 1 4- 1: Vtemp = Vtemp + V(i)
2720 IF AS(7) + AS(S) = TFS(i) THEN xlI = xlI + 1: Vtemp = Vtemp + V(i)
2760 NEXT
2770 IF xlI > I THEN T = T + Vtemp: REM T = total value of confounding interactions
2780 x1 = 0: Vtemp = 0
2800 FOR i= 1 TO038
28 10 IF A$(3) + AS(S) =TFS(i) TIHEN xlI xlI + 1: Vtemp = Vtenip + V(i)
2820 IF A$(6) + AS(8) =TFS(i) THEN xlI = xlI + 1: Vtemp, = Vtenip + V(i)
2860 NEXT
2870 IF xlI > 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
2880 x1 = 0: Vtemp =0
2900 FOR i= 1 TO038
2910 IF AS(3) + A$(6) =TF$(i) THEN x I xlI + 1: Vtemp = Vtemp + V(i)
2920 IF A$(5) + A$(8) = TFS(i) THEN xlI = xlI + 1: Vtemp = Vtemp + V(i)
2960 NEXT
2970 IF xlI> I THEN T = T + Vtemp: REM T = total value of confounding interactions
2980 xI = 0:Vtemp= 0
3 100 FOR i= 1 TO038
3110 IF AS(3) + AS(7) =TFS(i) THEN xlI = xlI + 1: Vtemp = Vtemp +V(i)
3120 IF AS(4) + AS(8) =TF$(i) THEN xlI = xlI + 1: Vtemp = Vtemp + V(i)
3160 NEXT
3170 IF xlI> 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
3180 x1 = 0:Vtemp =0
3200 FOR i= 1 TO038
32 10 IF AS(4) + AS(S) =TFS(i) THEN xlI = xlI + 1: Vtemp = Vtemp + V(i)
3220 IF AS(6) + AS(7) =TF$(i) THEN xl = xi + 1: Vtemp = Vtemp + V(i)
3260 NEXT
3270 IF xlI> I THEN T = T + Vtemp: REM T = total value of confounding interactions
3280 xl = 0:Vtemp =0
3300 FOR i= I TO038
33 10 IF AS(4) + A$(6) = TF$(i) THEN xlI = xlI + 1: Vtemp = Vtemp + V(i)
3320 IF AS(S) + AS(7) = TFS(i) THEN xl = xl + I: Vtemp = Vtemp + V(i)
3360 NEXT
3 370 IF xlI> 1 THEN T = T + Vtemp: REM T = total value of confounding interactions
3380 xl = 0:Vtemp= 0
3400 REM countering and feedback to user
34 10 counter = counter + 1: PRINT TC;
3420 IF counter = 30 THEN TEMP = TEMP * .5: PRINT "TEMP-- "; TEMP: counter = 0
3440 IF TEMP < .05 THEN GOTO 20000: REM These lines control how long to spend at one temp
3450 REM and how quickly the temperature falls. 3440 controls when to stop.
4000 IF T < TB THEN C = 0: TB = T: GOSIJB 10000: REM updating best solution.
4005 IF T = TB THEN GOSUB 10000
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4010 IF T < TC * (TEMP + 1) THEN GOSUB 11000
5000 REM need to generate a new selection of variables.
50101 f= INT(RND * 10) + 1
5020 f2 = INT(RND * 10) + 1
5030 IF nl = f2 THEN GOTO 5010
5040 FORj I TO 10
5050 AS(j) = C$O)
5060 NEXT j
5070 REM resets aS to current CS values
5200 REM swap two variable assignments between factors aS(fI) and aS(f2)
5210 REM tempS is a temporary variable
5220 TEMPS = AS(f2)
5230 AS(f2) = AS(fl)
5240 A$(fl) = TEMPS
5232 flips = flips + RND
5245 IF flips < TEMP + .3 THEN GOTO 5000
5347 flips = 0
5250 REM redo calculations
5260 GOTO 1000
10000 REM update best solution
10010 FORi= I TO 10
10020 P$(i) = AS(i)
10025 IF C < 10 THEN IF TB < 30 THEN PRINT AS(i),
10030 REM PRINT AS(i),
10040 NEXT i
10045 IF C < 10 THEN IF TB < 30 THEN PRINT "value of interactions is "; TB: C = C + 1
10050 REM "The value of confounded interactions is "; TB
10100 IF TB < 2 THEN END
10110 RETURN
11000 REM updating the current solution
11100 FORi-= 1 TO 10
11110 C$(i) = AS(i)
11120 NEXT i
11130 TC = T
11140 RETURN
20000 REM routine to end program
20 100 PRINT : "Best solution found:"
20110 FORi= i TO 10
20120 PRINT "Factor "; i; "should be assigned variable "; P$(i)
20130 NEXT i
20140 PRINT "The value of the interactions is "; TB
20150 END
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APPENDIX

This appendix contains the plots used to compare the baseline models to the

sensitivity models. The sensitivity models had the SAPk and AAPk terms equal to -1.

The FLOT comparison shows a reasonable correlation when the predicted FLOT

movement exceeds 500km. The sensitivity model predicted negative FLOT values for

design points that the baseline model predicted a FLOT movement of approximately 50

km.

FLOT comparison
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The ground strength comparison showed no unusual features.
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air atr comparison
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The air attrition comparison showed groupings which appeared to be correlated.

The upper left data points all had the maximum number of CAS missions. Once again,

CAS seems to have a significant impact on the air attrition process. Further investigation

is warranted on the relationship between air attrition and CAS missions.
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